Vaughan Primary School Calculation Policy

This policy supports the teaching and learning and expectations at Vaughan Primary School. Throughout this policy it shows the progression of skills that pupils with obtain across their schooling at Vaughan Primary School. Children once grasping one concept will explore the next concept within each operation.

Concrete, Pictorial, Abstract (CPA) Approach

 representations being used throughout school, irrespective of the year group.

Reasoning and Problem Solving

 complex and abstract problems, considering skills gained in previous areas of learning.

Addition						
Addition Reception	Addition - Year 1	Addition - Year 2	Addition - Year 3	Addition - Year 4	Addition - Year 5	Addition - Year 6
Understanding of the Cardinal Principle the final number counted is the total. Subitise and then use counting to check (up to 10). $\mathrm{O}+\mathrm{O}$ - combining objects 1 more than a given number up to 20 . $\mathrm{O}+\mathrm{O}$-counting on from a given number. Compare numbers using language such as 'more than' and 'greater than' and have a good understanding of 'one more than'. Understand the composition of numbers to 10 . Begin with numbers to 5 and understand the number bonds using a range of resources and physical objects, encouraging subitising. Move on to larger numbers as children develop a secure understanding. Be able to recall number bonds to 10. Use opportunities to encourage children to recall number bonds e.g. 'there are 3 children on the carpet and 3 children at the table. There are 6 children.' Solve problems using concrete resources and pictorial images. Children develop ways of recording calculations using numicon, bead strings, counters, part whole models, marks etc. Children experiment with combining different Numicon tiles together to find a total or match another piece.	$\pm=$ signs and missing numbers Children need to understand the concept of equality before using the '=' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. $\begin{aligned} & 2=1+1 \\ & 2+3=4+1 \end{aligned}$ Missing numbers need to be placed in all possible places. $\begin{array}{ll} 3+4=\square & \square=3+4 \\ 3+\square=7 & 7=\square+4 \end{array}$ Counting and Combining sets of Objects Combining two sets of objects (aggregation) which will progress onto adding on to a set Understanding of counting on with a numbertrack. Understanding of counting on with a numberline (supported by models and images).	Missing number problems e.g $14+5=10+$ $\square \quad 32+\square+\square=100 \quad 35=1+\square+5$ It is valuable to use a range of representations (also see Yl). Continue to use number lines to develop understanding of: Counting on in tens and ones $\begin{aligned} 23+12 & =23+10+2 \\ & =33+2 \\ & =35 \end{aligned}$ Partitioning and bridging through 10 . The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5 . $\begin{aligned} & 8+7=15 \\ & \text { Adding } 9 \text { or } \\ & \text { ll by adding } 10 \text { and adjusting by } 1 \\ & \text { e.g. Add } 9 \text { by adding } 10 \text { and adjusting by } 1 \\ & 35+9=44 \\ & \begin{array}{l} \text { Towards a } \\ \text { Written Method } \\ \text { Partitioning in different ways and } \\ \text { recombine } \\ 47+25 \end{array} \\ & \hline \end{aligned}$ Leading to exchanging: 72 Expanded written method $\begin{array}{ll} 40+7+20+5= & +\frac{40+7}{60+5} \\ 40+20+7+5= & \\ 60+12=72 & \end{array}$	Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers. Partition into tens and ones Partition both numbers and recombine. Count on by partitioning the second number only e.g. $\begin{aligned} 247+125 & =247+100+20+5 \\ & =347+20+5 \\ & =367+5 \\ & =372 \end{aligned}$ Children need to be secure adding multiples of 100 and 10 to any threedigit number including those that are not multiples of 10 . Towards a Written Method Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation) introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method. $\begin{array}{r} 247 \\ +125 \\ \hline \frac{372}{10} \end{array}$	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. Written methods (progressing to 4digits) Expanded column addition modelled with place value counters, progressing to calculations with 4-digit numbers. $\begin{gathered} 200+40+7 \\ \frac{100+20+5}{300+60+12}=372 \\ 247 \\ +\frac{125}{12} \\ 60 \\ \frac{300}{372} \end{gathered}$ Compact written method Extend to numbers with at least four digits. Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty. Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). $\begin{array}{r} 72.8 \\ +54.6 \\ \hline \end{array}$ $\underline{127.4}$	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. Children should practise with increasingly large numbers to aid fluency $\text { e.g. } 12462+2300=14762$ Written methods (progressing to more than 4digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm. $\begin{array}{r} 172.83 \\ +\quad 54.68 \\ \hline 227.51 \\ \hline 111 \end{array}$ Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.	Missing number/digit problems: Mental methods should continue to develop, supported by a range of models and images, including the number line. Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places Problem Solving Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.
Key Vocabulary add, more, and make, sum, total altogether double one more, two more ... ten more how	Key Vocabulary addition, near double, half, halve	Key Vocabulary one hundred more, Commutative	Key Vocabulary hundreds boundary Column Addition Estimate	Key Vocabulary Inverse	Key Vocabulary ones boundary, tenths boundary	Key Vocabulary

more is ...?
Subtraction- Reception

(comparison e.g. - 'how many more...'; 'how many less...') Compare numbers using language such as 'less than' and 'fewer than' and have a good understanding of 'one less than'.

nderstanding of

 numbers to 10 and link this knowledge to subtraction. Begin with numbers to 5 and understand the number bonds using a range of resources and physical objects, encouraging subitising. Move on to larger numbers as children develop a secure understanding.
Be able to recall

 number bonds to 10 . Use opportunities to encourage children to recall number bonds e.g. 'there were 5 children on the carpet but 2 have gone to play. There are now 3 children.'Use touch counting to understand the concept of subtraction, encouraging the children to physically take concrete resources away

Children develop ways of recording calculations using numicon, pictures, words, fingers, counters, part whole models, ten frames etc.

The link between the two may be supported by an image like this, with 47 being taken away from 72 , leaving the difference, which is 25 .

The bar model should continue to be used, as well as images in the context of measures.

Towards written methods

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42

705
$\begin{array}{r}705 \\ -40 \quad 2 \\ \hline 303 \\ \hline\end{array}$
$30 \quad 3$

Subtraction

Subtraction- Year 3
Missing number problems e.g. $\square=43$ $-27 ; 145-\square=138 ; 274-30=\square ; 245-$ $\square=195 ; 532-200=\square ; 364-153=\square$

Mental methods should continue to develop, supported by a range of develop, supported by a range of models and images, including the choices about whether to use complementary addition or counting back, depending on the numbers involved. Writte
introduce expanded colum subtraction with no decomposition, (Didened with place value counters need a less abstract represetation

For some children this will lead to exchanging, modelled using place value counters or Dienes.

A number line and expanded column method may be compared next to each other.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Expanded column subtraction with decomposition, modelled with place value counters, progressing to
calculations with 4-digit numbers.
If understanding of the expanded
method is secure, children will move on oo the formal method of
decomposition, which again can be initially modelled with place value

counters or Dienes equipment.

Subtraction- Year 6
Missing number/digit problems: \square and \# each stand for a different number. \# = 34 . \# + \# = $\quad+\square+$ \#. What is the value of a ? What if \# = 28? What if \# = 21
$10000000=9000100+\square$
$7-2 \times 3=\square ;(7-2) \times 3=\square ;(\square-$ 2) $\times 3=15$

Mental methods should

continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving

Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with decomposition to be secured.

Continue calculating with decimals, including those with different numbers of decimal places.

